

Abstract—In distributed systems, communication networks,

and general communication between processes, it is required to
have a process that synchronizes all other system processes and
communication between them.
If the chosen coordinator crashes or becomes isolated, a new
coordinator is elected. All active processes at any given point of
election get together to choose a coordinator.
Nowadays, many algorithms have been developed for the election
of the coordinator. These algorithms differ among themselves for
the way in which they select the coordinator, the criteria that are
taken into account for selection, and the number of messages
required for selection. Among the best known of such algorithms is
the Bully Algorithm and its modifications.
The proposed algorithm is also based on the Bully Algorithm, but
unlike similar algorithms, it will select the process with the
smallest identifier as a coordinator, assuming that the minimal
identifier that a process can take is known. This algorithm reduces
the number of messages (in the best case only one message is
required), as well as network traffic, and it ensures that the system
has only one coordinator at any given time.

Keywords—Coordinator, Distributed Systems, Election
Algorithms, Election, Liveness, Synchronous Distributed Systems.

I. INTRODUCTION

N distributed systems, if two or more processes send
messages at the same time, their messages will collide
and they will not arrive at their destination. Therefore,

among these processes, there must exist a process that
enables coordination between them and initiates certain
tasks in the system. This process is known as the coordinator
(leader). In general, it does not matter which process takes
on this special responsibility, but one of them has to do it
[1].

Designating a process as the coordinator in distributed
systems is a challenging issue that requires special
algorithms. To determine which process will take the role of
coordinator, different algorithms, known as election
algorithms, have been developed. These election algorithms
are needed in two cases:

 When the system starts.
 When the current coordinator fails or leaves the

system [1], [2].
In every election algorithm, the coordinator is selected

based on two basic criteria:
 Process identifier.
 Process availability.

Each election algorithm must satisfy safety and liveness
conditions.

When the status of any process i is set to
leader/coordinator, it is understandable that the certain
process (i) has fulfilled the liveness condition, and also that

there is no another process with the same status (which
satisfies the safety condition) [3], [4].

When an election is initiated, every process enters the
election procedure in either a state of non-participation or
one of active participation. Once a process enters into a
particular state, it remains in that state until the end of the
election.

Information is exchanged between processes by
transmitting messages to one another until an agreement is
reached. Once a decision is made, a process is elected as the
coordinator and all the other processes will acknowledge the
role of that process as the coordinator [5].

Once the coordinator is selected, the processes reach a
state known as a terminated state [3].

Nowadays, there are many election algorithms, such as:
the Bully Algorithm - designed by Hector Garcia Molina in
1982 [6], the Enhanced Bully Algorithm for leader process
election in synchronous distributed systems [7], the Ring
Based Algorithm, proposed by Silberschatz and Gavin [8],
[9], [10] the Modified Bully Algorithm using election
commission [11], the Change-Roberts Algorithm [12], the
Peterson Algorithm [13], the Franklin Algorithm [14], etc.

In this paper, we have proposed an algorithm, which is a
modification of the Bully Algorithm. The proposed
algorithm selects the process with the smallest identifier as a
coordinator and reduces the number of required messages.

II. BULLY ALGORITHM
When any process notices that the coordinator is no

longer responding to requests, it initiates an election [1].
This algorithm is based on these assumptions:

 Each process knows the priority of other processes in
the system.

 The communication subsystem does not fail [6],
which means that the communication infrastructure
is stable.

 A process never pauses and always responds to
incoming messages with no delays [1], [6].

 There are no transmission errors [6].
 Whenever the selection of the coordinator is made, it

is ensured that the process with the highest identifier
will be selected as the coordinator [1].

 A new process or one that failed earlier may join in
the system.

The algorithm follows the following procedure:

1) The process P sends an ELECTION message to all

processes with higher numbers and waits for responses.
2) If no one responds, P wins the election and becomes

coordinator.

The Reduction of Number Messages in Election
Bully Algorithm

Qamil Kabashi, Arbnor Zeqiri and Milaim Zabeli

I

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 53

3) If one process, Q, with a higher number answers with
OK, P’s job is done and the process Q will continue the
election procedure.

The number of required messages for determining the
coordinator process, is calculated by [15], [16], using the
following formula:

(1)() 1mT N P N P N= − + − + − (1)

where:
Tm – the number of exchanged messages between processes
when process P detects failure of the coordinator,
N – the total number of processes,
P – the ID of the process that detects the failure of the
coordinator.

If a process that was previously down comes back up, it
initiates an election procedure. If it happens to be the
highest-numbered process currently running, it will win the
election and take over the coordinator's job. Thus the biggest
guy in town always wins, hence the name "bully algorithm"
[1].

A. Disadvantages of Bully Algorithm
Some of the disadvantages of the Bully Algorithm are:

 Large number of messages:
o Best case: () 1O n n= −

o Worst case: 2 2() 1O n n= −
o When a new process joins the system:

2 2() 1O n n= −
 There is no mechanism that ensures that the system

has only one coordinator.
 When a new process joins a new election, the

procedure must start.

III. IMPROVED BULLY ELECTION ALGORITHM FOR
SYNCHRONOUS DISTRIBUTED SYSTEMS

Md. Golam Murshed and Alastair R. Allen in [7] have
made some improvements to the Bully Algorithm.
In their algorithm the processes are divided in two sets: N/2
Candidate processes and N/2 Ordinary processes, where N
is the total number of processes. Any Candidate process has
a higher identifier than any Ordinary process.
The algorithm follows the following procedure:
1) A process detects the failure of the coordinator:

a. If it belongs to the Ordinary set it sends the
election message to Candidate processes and
waits to receive an OK message. If it does not
receive any answer from any Candidate process,
then it sends the election message to the
Ordinary processes that have higher IDs.

b. If it belongs to the Candidate set it sends an
election message to the Candidate processes that
have higher IDs.

The election message contains the ID of the failure detector
process and the ID of the failure coordinator. The respective
answer message contains the process IDs of the leader and
Candidate set.
2) When a process receives the election message, it

answers with an OK message and attaches its ID to it.
3) The electioneer process, after receiving all OK

messages, selects the process with the highest ID as the

coordinator and sends the coordinator message, to
which it attaches the ID of the coordinator and the
Candidate set, to all processes.

4) A new process joins the system:
a. If it belongs to the Ordinary set it sends a query

message to the Candidate processes; otherwise, if it
belongs to the Candidate set, it sends a query
message to the Candidate processes that have
higher IDs.

b. When a process receives a query message, it
answers with an answer message, to which it
attaches the ID of the coordinator and the
Candidate set.

c. If the process which receives the answer message
has a higher ID than the ID of the current
coordinator, it initiates a new election procedure.

A. Disadvantages of Improved Bully Algorithm
As the original Bully Algorithm, this improved algorithm
also has some disadvantages:

 It is a complex algorithm
 Large number of required messages:

o Best case: ()O n

o Worst case: 2()O n
 When a new process joins the system the set

cardinality must be rearranged.
 When a new process joins a new election, the

election procedure must start.

IV. THE PROPOSED ALGORITHM
The algorithms discussed above choose the process with the
highest ID as the coordinator. The algorithm that we
propose chooses the process with the smallest ID as the
coordinator.
Our proposed algorithm significantly improves the number
of messages required to elect a coordinator and also ensures
that the system has only one coordinator at any given time.

A. The Algorithm Procedure
Our proposed algorithm assumes that the minimum ID that a
process may take is known.
The algorithm follows the following procedure:
1) When process Pi notices a failure of the coordinator,

then:
a. If Pi has the second minimum ID, it sends the

COORDINATORi message (where i is the ID of
Pi) to notify the other processes that Pi is now
the coordinator (Fig. 1.a).

b. If Pi does not have the second minimum ID, it
sends the ELECTION message to all processes
(broadcasts) and waits for responses.

2) If process Pi does not receive any responses, then it
becomes the coordinator and sends COORDINATORi
message, where i is the ID of the Pi.

3) If after Pj receives the ELECTION message from Pi, it
determines that it has a smaller ID than the Pi, then:

a. If it has the second minimum ID, it sends a
COORDINATORj message (Fig. 1.b).

b. If it does not have the second minimum ID, it
sends an OKj message (Fig. 1.c).

Where j is ID of the process Pj.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 54

4) The process Pi, after receiving the responses from all
processes with smaller ID, selects the process with the
smallest ID Pk as the coordinator and sends a
COORDINATORk message to all processes, where k is
the ID of the coordinator (Fig. 1.c).

0

2

3

1

4

REQUEST

The previous coordinator

CO
O

RDINATO
R1

0

2

3

1

4

The previous coordinator

CO
O

RDINATO
R1

ELECTIO
N

5REQUEST

0

2 3 64

The previous
coordinator

5

REQUEST

OK2

ELECTION

COORDINATOR2

OK3

OK4

(a)

(b)

(c)
Fig. 1. Electing the new coordinator in case of failure of the
previous coordinator: (a) The case when the process with the
second minimum ID detects the failure of the coordinator,
(b) The case when the process with the second minimum ID
receives the ELECTION message and sends a
COORDINATORi message, (c) The case when process 5
selects the new coordinator.

5) If a process Px joins the system, then:

a. It has the minimum ID, it sends a COORDINATORx
message to all processes to notify them that it is the
new coordinator, where x is the ID of Px (Fig. 2.a).

b. Otherwise, it sends a QUERY message to all active
processes (broadcasts). The coordinator answers with
CIDc message, where c is the ID of the coordinator.
If the ID of Px is smaller than c, then it becomes the
coordinator and it sends the COORDINATORx
message (Fig. 2.b).

2

3

0

4

CO
O

RDINATO
R0

(a)

The process
that joins in
the system

2
3

4

1

CID2

Q
UERY

CO
O

RDIN
ATOR1

(b)

The current
coordinator

The process
that joins in
the system

Fig. 2. The case when a new process joins the system: (a)
The case when it has the minimum ID, (b) The case when it
has a smaller ID than the current coordinator.

6) When process Pw receives the COORDINATORk
message, it checks if the ID of the new coordinator is
higher than its own ID. If it is true, then it sends a
COORDINATORw message to the all processes to
notify them that now Pw is the new coordinator, where
w is the ID of Pw (Fig. 3). This ensures that we have
only one coordinator at any given time.

3 4 258

COORDINATOR3

COORDINATOR2

Fig. 3. The case when process 2 receives the
COORDINATOR3 message with a higher ID.

V. PSEUDOCODE

The pseudocode for every step of proposed algorithm is
shown below.

//The process Pi with ID i detects the
//failure of the coordinator
procedure failureDetection
 if (Pi has the second minimum id)
then
 broadcast(coordinatori)
 else

broadcast(election)
wait for responses
if (any ok message received)then
 find smallest id c from the
responses
 broadcast(coordinatorc)
else

 broadcast(coordinatori)
 end if
 end if
end procedure

//The process Pw with ID w receives
//COORDINATORk message
procedure coordinatorMessageReceived
 if(w is lower than k) then
 broadcast(coordinatorw)
 end if
end procedure
//The process Pj with ID j receives an
//election message from the process Pi
//with ID i
procedure electionMessageReceived
 if(j is the second minimum id) then
 broadcast(coordinatorj)
 else
 if(j is lower than i) then
 send(OKi)
 end if
 end if
end procedure

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 55

//The new process Px with ID x joins the
//system
procedure joiningTheSystem
 broadcast(query)
 wait for response
 if(x is lower than id of the
coordinator) then
 broadcast(coordinatorx)
 end if
end procedure

//The process receives query message
procedure queryMessageReceived
 if(The process with ID c is the
coordinator)then
 answer with (CiDc) message
 end if
end procedure

VI. FINDINGS AND COMPARISON
Based on the proposed algorithm, we see that processes with
the smallest identifier are more favorable to be elected as the
coordinator, because:

 The process with the minimum ID does not start an
election procedure, but automatically becomes the
coordinator.

 When the coordinator fails, the process with the
second minimum ID does not start an election
procedure, but automatically becomes the
coordinator.

 It reduces the number of messages required:
o Best case: 1
o Worst case:
2 (1)b n+ − (2)
where, b is the number of broadcast messages,
n is the total number of processes
o In the case when a new process joins the

system:
• Best case: 1
• Worst case: 3

 The processes do not need to know the ID of any
process.

 It is suitable for different process topologies.
 There is no need to start a new election when a new

process joins the system.
 There is no need to update the minimum ID that the

process may take.

Table I and Table II show a comparison between the number
of messages required for the proposed algorithm and the
number of messages required for the other two algorithms
reviewed before.

Table I. Comparison of the number of messages required
for the coordinator election in the worst case.

Number
of

processe
s

Number of
messages

required in
the Bully
Algorithm

Number of messages
required in the

Improved Bully
Election Algorithm for

Synchronous
Distributed Systems [7]

Number of
messages

required in the
proposed
algorithm

5 24 9 6
10 99 18 11
20 399 38 21

Table II. Comparison of the number of messages required
for the coordinator election in the best case.

Number
of

processes

Number of
messages

required in
the Bully

Algorithm

Number of messages
required in the Improved
Bully Election Algorithm

for Synchronous
Distributed Systems [7]

Number of
messages

required in the
proposed
algorithm

5 4 4 1
10 9 9 1
20 19 19 1

VII. CONCLUSION
If a process has the minimum ID, it does not need to

initiate an election procedure. According to the rules of the
proposed algorithm, it is the process which will be the
coordinator.

If a process that has the second minimum ID detects the
failure of the coordinator or receives an ELECTION
message, it immediately becomes the coordinator and sends
a COORDINATOR message, with its ID attached, to all
other processes.

Our proposed algorithm is:
 Simple

o The first two processes do not initiate an election
process.

o Unlike the Bully Algorithm, only one process
initiates an election procedure and determines the
coordinator.

o Unlike the Improved Bully Election Algorithm for
Coordinator in the Synchronous Distributed
Systems, there is no need to divide processes into
sets.

 Efficient–Reduces the number of required messages.
 Fast–Reduction of the number of messages speeds up

the election procedure.
 Safe–It ensures that the system has only one

coordinator at any given time.

VIII. REFERENCES
[1] A.S. Tanenbaum, M.V. Steen “Distributed systems: Principles and
Paradigms.” 2nd Ed, Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
2006.
[2] M.R. EffatParvar, N. Yazdani, M.EffatParvar, A. Dadlani, and A.
Khonsari. "Improved Algorithms for Leader Election in Distributed
Systems." The 2nd International Conference on Computer Engineering and
Technology (ICCET 2010), Vol. 2, pp. 6-10, April, 2010
[3] J. Villadangos, A. Córdoba, R Fariña , M. Prieto. “Efficient leader
election in complete networks.” In Proc. 13th Euromicro Conf. Parallel,
Distributed and Network-based Processing, IEEE Computer Society, pp.
136-143, 2005.
[4] G. Singh. "Efficient Distributed Algorithms for Leader Election in
Complete Networks." Distributed Computing Systems, 11th International
Conference, pp. 472-479, on 20-24 May 1991.
[5] S. H. Park, Y. Kim, and J. S. Hwang. "An efficient algorithm for leader-
election in synchronous distributed systems." IEEE TENCON, pp. 1091-
1094, 1999.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 56

[6] H. Garcia-Molina. “Elections in Distributed Computing System.” IEEE
Transaction Computer, Vol.C-31, pp. 48-59, 1982.
[7] Md. G. Murshed and A. R. Allen. “Enhanced Bully Algorithm for
Leader Node Election in Synchronous Distributed Systems.” Computers
(2012), Vol. 1, pp. 3-23.
[8] M. Zargarnataj. "New Election Algorithm Based on Assistant in
Distributed Systems." Proc. IEEE AICCSA, pp. 324-331, 2007.
[9] G. N. Frederickson, N. A. Lynch. “Electing a leader in a synchronous
ring.” Journal of the ACM (1987), v.34 n.1, pp.98-115.
[10] G.N. Frederickson, N. Lynch. "The impact of synchronous
communication on the problem of electing a leader in a ring." Proc. 16th
ACM Symp. Theory of Computing, pp. 493–503, 1984.
[11] M. Rahman and A. Nahar. "Modified bully algorithm using election
commission." MASAUM Journal of Computing (2009), vol.1 no.3, pp. 88-
96.
[12] G.L. Peterson. “An O(nlog n) Unidirectional Algorithm for the
Circular Extrema Problem.” ACM Transactions on Programming
Languages and Systems (TOPLAS), v.4 n.4, pp. 758-762, 1982.
[13] W. R. Franklin. "On an improved algorithm for decentralized extrema
finding in circular configurations of processors." Commun. Ass. Comput.
Mach., vol. 25, pp. 336-337, 1982.
[14] B. Awerbuch, “Optimal Distributed Algorithm for Minimum weight
spanning tree, Leader Election and related problems.” ACM STOC, pp.
230-240, 1987.
[15] P B. Soundarabai, R. Sahai, J. Thriveni, K R Venugopal and L M
Patnaik. “Improved Bully Election Algorithm for Distributed Systems.”
International Journal of Information Processing (2013), 7(4), pp. 43-54.
[16] A. Arghavani, E. Ahmadi and A.T. Haghighat. "Improved bully
election algorithm in distributed systems." Information Technology and
Multimedia (ICIM), International Conference, 2011.

Qamil Kabashi is professor of Department of Informatics Engineering and
vice dean at Faculty of Mechanical and Computer Engineering, University
of Mitrovica, 40000 Mitrovica, Republic of Kosovo (e-mail:
qamil.kabashi@uni-pr.edu).
Arbnor Zeqiri is Software Backend Engineer/Team Leader and actually is
working on master thesis: “Application of RFID and GPRS in Access
Control System.” at Faculty of Mechanical and Computer Engineering,
University of Mitrovica, 40000 Mitrovica, Republic of Kosovo (e-mail:
arbnor.zeqiri@uni-pr.edu).
Milaim Zabeli is professor and head of Department of Informatics
Engineering, Faculty of Mechanical and Computer Engineering, University
of Mitrovica, 40000 Mitrovica, Republic of Kosovo (e-mail:
milaim.zabeli@uni-pr.edu).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 10, 2016

ISSN: 2074-1294 57

http://dl.acm.org/citation.cfm?id=7919&CFID=769194231&CFTOKEN=65508201
http://dl.acm.org/citation.cfm?id=7919&CFID=769194231&CFTOKEN=65508201
http://dl.acm.org/citation.cfm?id=357194&CFID=598920923&CFTOKEN=13540191
http://dl.acm.org/citation.cfm?id=357194&CFID=598920923&CFTOKEN=13540191
http://dl.acm.org/citation.cfm?id=357194&CFID=598920923&CFTOKEN=13540191

